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Abstract—A key challenge of web platforms like social net-
working sites and services for news feed aggregation is the
efficient and targeted distribution of new content items to users.
This can be formulated as the problem of retrieving the top-k
news items out of the d-degree ego network of each given user,
where the set of all users producing feeds is of size n, with
n � d � k and typically k < 20. Existing approaches employ
either expensive join operations on global indices or suffer from
high redundancy through denormalization. This makes retrieval
of different top-k news feeds for thousands of users per second
very inefficient in a large social network. In this paper, we
propose two graph models GRAPHITY and STOU to address this
problem. GRAPHITY is optimized for fast retrieval of news feeds
and has a runtime of O(k log(k)). The GRAPHITY index does not
involve data redundancy. An update of the index upon insertion
of a new item to the feed is possible in a runtime linear to the
nodes’ indegree din. New content can be stored in STOU in O(1)
at the cost of slower retrieval speed of O(d log(d)). We verify the
theoretical runtime complexity of GRAPHITY and STOU on two
data sets of different characteristics and size. We show that on a
single machine GRAPHITY is able to retrieve more than 10 000
unique news feeds per second in a network with more than one
million users. Our evaluation confirms that retrieval of news feeds
with GRAPHITY is independent of the node degree d of a user’s
ego network and network size n and does scale to networks of
arbitrary size.
Index Terms—social network; graph data base; social news

feed; graphity; graph index; scalability; top k join

I. INTRODUCTION
Providing streams of recent news items is a typical feature of

today’s social networking platforms like Facebook1 and news
feed aggregators such as Google Reader2. These streams of
news items depend heavily on a user’s friendship network or a
user’s individual choice of news sites to follow. Furthermore,
users typically are interested only in the most recent news
items, i.e. the top-k news items. This leads to a scenario,
where content items have to be assembled based on the local
ego network of an aggregator node and sorted by a global
relevance criterion (e.g. by date of creation). Typically, the
aggregator is a user and his ego network is formed by his
friends or his personal news interests.
Depending on the concrete setting, it is necessary to com-

pute top-k news item feeds for thousands of users per second

1http://www.facebook.com/
2http://www.google.com/reader/
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Fig. 1. Social network of users (round nodes) and the news items they
produce (squared nodes).

and to flexibly reflect changes in the ego networks or newly
created content items. Thus, the task requires an algorithmic
solution which is flexible, efficient, and scalable. In this
context efficiency means that the most recent news items can
be computed fast for an individual user. Scalability, instead,
requires that the performance is independent of the network
size, e.g. the number of users, friendship relations, or content
items.

A. Social Network Example
Let us illustrate the task of retrieving the top-k news items

feed for a user with a concrete example in the scenario of
a social network. In Figure 1, the circular nodes a, b, c, d
and e, represent users in a social network. The follow relation
between two circular nodes represents a directed friendship
relation of two users in the social network. Over time, the
users create content items, e.g. they post status updates, upload
photos, share links, etc. These content items are represented
as squared nodes in the graph in Figure 1 and are linked
to the user who created them by a dashed createdNews
relation. The numbers in these squared nodes represent the
item’s creation time, where a higher value indicates a more
recently generated content item.
To retrieve the top-k news items feed of a user, we have to

consider the user’s ego network as well as the content items
created in this network. For instance, the ego network of node
a is the set {b, c, d, e} as indicated by the follow edges in the
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Fig. 2. Relational data base scheme for a social news stream application and
query with 2 joins to retrieve the most recent content items for aggregation
node a from its ego network

graph. In order to retrieve the top-k news items of node a, all
nodes in the ego network are visited for collecting the content
items they have created. These content items are ordered by
time and aggregated by cutting off all items after position k+1.

B. Solutions to Top-k News Feed Aggregation
The procedure we just described corresponds to the task of

top-k join queries in relational data bases [1] and is depicted in
Figure 2. In a relational model, our scenario above translates to
a join operation over the users based on the follow relation and
a second join with the news items based on the createdNews
relation. The disadvantage of this approach is exactly the need
to perform two join operations and a consecutive sorting,
which renders retrieval a very expensive operation (see also
the examples in [1]).
An alternative naive approach is to give up normalization

in the data model and store the history of content items
redundantly for each individual user. These redundant content
lists entail a much higher need for storage capacity and can
cause anomalies when changing the topology of the network
graph, e.g. when new follow relations between users are
established or existing ones break up.
In this paper, we develop two new graph-based models for

fast and flexible retrieval of the top-k news items feeds in such
scenarios as described above: STOU and GRAPHITY. The
STOU approach is an extension of top-k join query processing
on relational data bases. It involves modeling the problem
in a graph data base and taking advantage of the specific
strengths of graph data bases, which allow a more flexible
possibility to model chaining relations of items. In this way it
is possible to easily maintain pre-sorted lists of content items
which allow a more efficient sorting while retrieving items.
In our case, sorted lists are more efficient than a b-tree. This
is due to the fact that the sorting is done by the timestamp
of the creation time. Thus, new items are always inserted at
the head of our sorted list. The retrieval operation of STOU
depends on the size of the ego network, i.e. the number of
follow relations. Index maintenance operations, e.g. as they are

required for the creation of new content items or when adding
new friendship relations, have constant runtime in STOU. As
a second data structure, we introduce GRAPHITY which yields
a still better retrieval performance. The runtime of GRAPHITY
depends only on k, the number of retrieved content items. In
particular the retrieval operation is independent of the size of
the ego network, the overall number of news items, and other
characteristics of the social network graph. However, index
maintenance operations are more expensive than in STOU
but as in denormalized relational approaches they are at most
linear in the size of the ego network. Finally, neither for
STOU nor for GRAPHITY it is necessary to store content items
redundantly. Thus, we present two approaches with varying
strengths and weaknesses, which can be chosen for the top-k
news feed aggregation depending on the application scenario.
Further contributions of our work are the following:
• We show analytically the runtime of STOU and
GRAPHITY as well as of several baseline methods.

• We conduct an empiric evaluation showing that our graph
models perform very well in realistic scenarios.

• We provide evidence which of the two indices to choose
in which setting, depending if update or read operations
are more frequent.

The remainder of the paper is organized as follows: In
Section II, we formalize the problem of retrieving the top-
k news items feeds for ego networks. Afterwards in III, we
introduce our novel index models STOU and GRAPHITY for
increasing efficiency of retrieving the news feeds for ego
networks. In Section IV, we describe different baselines and
conduct a theoretical analysis and comparison of the baselines
with STOU and GRAPHITY. Besides the theoretical analysis
and comparison of our model with the baselines, we have
also implemented the algorithms and evaluated them on two
datasets of different size and characteristics. The data sets
are described in more detail in Section V, while the actual
evaluation is presented in Section VI. In our evaluation,
we have conducted different experiments to show among
others GRAPHITY’s independence of the node degree d and
network size for retrieving the news feeds and have compared
the performance of STOU in updating and maintaining the
index when the network changes. As our theoretical analysis
predicted, GRAPHITY outperforms the baselines in retrieving
the news feeds, while STOU is more efficient in maintenance
operations. In Section VII, we discuss related work and
compare it to our approaches before discussing the lessons
learned and concluding the paper in VIII.
Please note that the source code of our evaluation frame-

work, the implementation of GRAPHITY and STOU, and the
preprocessed wikipedia data files can be downloaded under an
open source license at:
http://www.rene-pickhardt.de/graphity-source-code/

II. FORMALIZATION OF TOP-k NEWS ITEM FEED
AGGREGATION FROM EGO NETWORKS

In order to formalize the problem of retrieving the top-k
most recent content items from a user’s ego network and to
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Term Notation
Nodes V = A ∪ C
Aggregating nodes A
Content nodes C
Labels L = {follows, createdNews}
Edges E ⊂ V × L× V

Ego(a) {b ∈ A|(a, follows, b) ∈ E}
C(a) {c ∈ C|(a, createdNews, c) ∈ A× L× C}
News(a) {c ∈ C|∃b ∈ Ego(a) : c ∈ C(b)}
Newsk(a) Topk(Sort(News(a)))
Size of the network n = |V |+ |E|
Node degree d
In / Out degree din, dout
News feed length k
Avg. # content nodes u = 1/|A|

∑
a∈A

|C(a)|
per aggregating node

TABLE I
NOTATION TO REPRESENT SOCIAL NETWORKS AND NEWS FEED

AGGREGATION NETWORKS

discuss several baselines we define some notation. For quick
reference, the same notation is also summarized in Table I.

• Let G(V, L,E) be a graph with a finite set of vertices V ,
a finite set of labels L and a set of edges E ⊂ V ×L×V .

• The set of vertices V is a complete partitioning i.e. V =
A∪C, A∩C = ∅ into aggregating nodes A (e.g. users in
a social network) and content nodes C (e.g. news items
created by users)

• L consists of the set {follow , createdNews}. These two
labels reflect the partitioning of V = A∪C and the rela-
tions between the different elements in the graph. Edges
between nodes in A are labeled with follow and, for
instance, correspond to the social network. Edges from
nodes in A to nodes in C are labeled with createdNews.

• The elements c ∈ C are pairs c = (t, s), where t is
a timestamp and s is the content which can be a text, a
photo, a video, etc. We write t(c) to denote the timestamp
of a content node c.

• Each content node is created by exactly one aggregating
node a ∈ A.

• We define the set C(a) = {c ∈ C|(a, createdNews, c) ∈
E} to be the set of all content nodes that belong to a
(e.g. news items created by a specific user).

• We call the set Ego(a) := {b ∈ A|(a, follows, b) ∈ E}
the ego network of an arbitrary aggregating node a ∈ A.

• In(a) is defined to be the set of aggregating nodes
following a, i.e. In(a) = {b ∈ A|(b, follow , a) ∈ E}.

The problem of retrieving the top-k news items feed of
a user a can now be formalized as computing Newsk(a),
which is defined by Newsk(a) = Topk(Sort({c ∈ C|∃b ∈
Ego(a) : c ∈ C(b)}, t)) where Sort is a generic sorting
function using the timestamp extraction function t to extract
a value from each element that is sorted and Topk returns the
first k elements of the list returned by Sort.
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Fig. 3. Social network graph. Content items are now stored as a temporally
ordered linked list improving the runtime of retrieving news streams.
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Fig. 4. Ego network of aggregating node a. Remark that for retrieving the
most recent content item from Ego(a) all aggregating nodes b ∈ Ego(a) have
to be visited

III. TWO GRAPH MODELS FOR RETRIEVING SOCIAL
NEWS STREAMS

As described above, we apply methods from graph data
bases to the task of top-k news items feed aggregation. This
allows for two key changes in the model. For the STOU
approach, we convert the createdNews relation to a list
structure in the graph as shown in Figure 3. In this way, we
can store the content items for each aggregating node sorted
by the time of their creation, which in turn allows a quicker
retrieval and sorting of the top-k news items by means of a
merge algorithm. A second step introduced for GRAPHITY is
to additionally maintain a pre-sorted list of the nodes in a
ego network based on where the most recent content items
were created. This allows for even quicker compilation of the
top-k items from the sorted lists of content items. We now
explain first the STOU algorithm and subsequently extend
this approach to GRAPHITY.

A. Ego Network Representation and Data Structures for
STOU
In Figure 3, we have organized the content nodes generated

by each aggregating node in a linked list, the entries of which
are ordered according to their timestamps. The ego network
of node a is shown in Figure 4. Extending our notation from
Section II, we introduce this list by simply connecting the
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Fig. 5. Ego network of aggregating node a with it’s GRAPHITY index. Please
note that the linked list ego:a is implemented as doubly linked list.

content nodes with directed edges with a new label nextItem.
This means, we connect two content nodes ci, cj ∈ C(a)
generated by the same aggregating node a with an edge
(ci, nextItem, cj) if they are subsequently published content
items. Formally, we connect t(ci) and t(cj) if t(ci) > t(cj)
and if there is no ck ∈ C(a) such that t(ci) > t(ck) > t(cj).
In order to retrieve the news feed for an aggregating node the
lists of content nodes in its ego network have to be merged.
Given that we operate on sorted lists, this step can be achieved
efficiently. The remaining drawback of this method is that even
for obtaining only the first most recent content item (i.e. k = 1)
in News1(a) still all follows edges from a to all nodes in
Ego(a) have to be traversed.

B. Ego Network Representation and Data Structures in
GRAPHITY

The key idea of GRAPHITY is to execute this expensive
step of sorting a node’s ego network while retrieving a stream
to a step that happens less frequently: the creation of a new
content item. Thereby, we benefit from the fact that we have to
perform the sorting less often. Furthermore, sorting becomes
easier and computationally less expensive as we do not have
to sort all the nodes in an ego network, but simply update an
already sorted list by moving one of its elements to the head
of list – the one that has just created a new content item.
In order to achieve this, we define an individual GRAPHITY

index for each aggregating node. The individual index consists
of a list of length dout of aggregating nodes ordered according
to the time stamps of the content nodes they contribute. The
lists are doubly linked and each list is distinguished from all
others by using its own edge type (implying as many edge
types as there are aggregating nodes in the network, e.g. users).
Extending our example from Figure 3, we show a

GRAPHITY index for user a in Figure 5. For the aggregating
node a, we introduced edges with the label ego:a. These
edges build a linked list of all the aggregating nodes in a’s
ego network. In our example, the first edge connects a to the
aggregating node e, as e has created the most recent content
node (timestamp 20) in a’s ego network. The GRAPHITY
index for a further lists node d (most recent content node
has timestamp 19) b (timestamp 16) and c (timestamp 14).

C. Retrieving News Items Feeds in STOU and GRAPHITY

Recall that for every aggregating node a the linked list of
content items C(a) stores the content items that are created
by a. When retrieving a news feed for a, we have to look
at C(b) for every b ∈ Ego(a) and extract the top-k most
recent content items into a joint sorted list. The runtime for
STOU is O(d log(d)) since for all d nodes b ∈ Ego(a) the
list C(b) has to be considered when merging the items. In the
case of GRAPHITY retrieving a news feed can be achieved
by the application of a top-k n-way merge algorithm which
is attached in Appendix A. Therefore, GRAPHITY’s runtime
is only O(k log(k)) due to the fact that at most the k lists
with the k most recent updates have to be included in top-k
n-way merge. This means, we do not have to consider the
content items C(b) of users where already their most recent
item would not qualify to get into the top-k list. In Figure 5 one
can see that for k = 3 only two lists have to be included for
retrieving News3(a) with the help of GRAPHITY. We remark
that an additional feature of GRAPHITY is that the number of
k can be set individually and flexibly for every aggregation
node during runtime. Furthermore, it is possible to extend a
top-k list by fetching l additional items at relatively small
computational cost (for details see Appendix A).

D. Incrementally Maintaining the Data Structures

There are several types of events which generate the need
to update the data structures. These events are the creation or
deletion of a new content node, the creation of an aggregating
node and changes in the follow network structure, i.e. the
addition or deletion of follow edges between aggregating
nodes. We will now look at the theoretic effort involved in
updating the index for these events.
1) Inserting a Content Node: When an aggregating node

a creates a new content node, both methods STOU and
GRAPHITY need to add it as the top element of the list
representing C(a). This operation has a runtime complexity
of O(1). For GRAPHITY additional effort has to be done. The
index of each node following a has to be updated, i.e. a has
to be moved to the beginning of every list representing the
GRAPHITY index of its followers. Since the GRAPHITY index
is a doubly linked list and the follow edges remain in the
graph this operation can be done in O(1) for every follower
and, thus, in a time linear for all of the followers i.e. O(d).3

2) Inserting a new Aggregating Node: This operation is
rather simple for both STOU and GRAPHITY. A new aggra-
gation node does not have any follow relations, neither has it
created any content items yet. Accordingly it is sufficient to
create the node and, thus, this operation is of O(1).

3An alternative to updating the GRAPHITY index of all aggregating nodes
following an aggregating node that has created a content node is to simply
mark the index as outdated and perform bulk updates at pre-defined intervals
or on demand when an affected news feed is retrieved. However, as marking
the indices of the aggregating nodes following a as outdated is of O(din)
there is no real gain over incrementally updating the GRAPHITY indices at
the same cost.
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3) Deleting a Content Node: Deleting a content node is
O(1) for STOU and for the most cases in GRAPHITY, as it is
sufficient to remove an item from the sorted list representing
C(a). A particular case for GRAPHITY is, when the most
recent content node of an aggregating node is deleted, as
this can affect the sorted list of users in an ego network. For
example, in Figure 5 node d wants to delete the content node
with timestamp 19. In this case, the GRAPHITY index of a
and the one of all other nodes following d has to be updated.
Each update includes shifting the node d to the correct position
of the GRAPHITY index. This means that this rare operation
depends on the node degree d and is O(d2) for GRAPHITY.
4) Changing the Friendship Graph: In the case of STOU

these operations are obviously O(1) as it is sufficient to add
or remove a follow edge. Again in the case of GRAPHITY we
have to pay more attention.
If a new edge (a, follow , b) is added from a to b, the node

b will have to be inserted into a’s GRAPHITY index. Since
the list representing the index needs to be in temporal order,
the insertion point of b depends on the timestamp of the last
content node b created as well as on the timestamps of the
nodes in the linked list. This requires a linear traversal through
the linked list to identify the correct insertion point. Thus, the
algorithm for adding a follow edge between aggregating nodes
is linear in the node degree of a.
Removing an existing edge (a, follow , b) entails the deletion

of b from the GRAPHITY index of a. Using the edge that
is to be removed, we can directly access b in O(1). Since
the GRAPHITY index consists of a doubly linked list, we
can remove the element b by interlinking its predecessor and
successor in O(1).

IV. BASELINES AND THEORETICAL COMPARISON
After having analyzed our two models GRAPHITY and

STOU in detail, we now introduce alternative approaches
for computing Newsk(a) news items feeds. These approaches
are taken from related work in the field and correspond
to a relational model (ST) as well as denormalization by
introducing redundancy in the data model (RCL). The ST
approach is in principle comparable to conducting top-k join
queries [1] in relational databases as introduced in Section I.
The RCL approach of storing content items redundantly is
followed by Li et. al [2] in their system for personalized
recommendations in social networks4 (see also Section VII
on related work).
A list of redundant content items is used in settings similar

to social networks. The UNIX emailing platform sendmail [3]
provides a distinct file in the /var/spool/mail directory con-
taining a list of the emails of each individual user. Thus, any
email send to more than one user within the same sendmail
installation is stored redundantly on the hard disk.
We will briefly describe the ideas of the approaches and

analyze their complexity. In this context, we will frequently

4From the paper it is unclear whether the authors actually use lists or
employ a different data structure. However, this detail does not affect the
performance in our setting.

depend on the average number of content nodes attached to
an aggregating node. We will refer to this value as u.

A. Joining Along the Star Topology of Nodes (ST)
The star topology baseline is motivated by the naive mod-

eling of a social network graph of creating an edge between
two vertices whenever a connection exists in the network.
This approach can be seen as the direct implementation of the
social network model of Figure 1. This approach enables fast
insertion since all kinds of operations require only a single
write operation. However, retrieval of news feeds is highly
inefficient. This is due to the fact that it involves a breadth
first search of depth 2 to reach out first to the aggregating
nodes in the ego network over the follow edges and then
to obtain their content nodes over the createdNews edges.
Afterwards all content nodes have to be sorted by time which
is in O((d× u) log(d× u)).

B. Redundant Content Lists (RCL)
The RCL approach is motivated by the idea of heavy

denormalization of data and a redundant way to store them in
order to make retrieval as fast as possible. Every aggregating
node a in the graph maintains its own sorted list of content
items from the ego network of the entity Ego(a). Furthermore
RCL can easily be distributed. Whenever an aggregating node
a creates a content item all d lists for every node b with
a ∈ Ego(b) have to be updated. This is the same amount
of updates as is required in GRAPHITY. In order to achieve
comparability, we implemented the RCL in a graph data base
which limited our ways in scaling. For obvious reasons the
storage used by this approach is O(d× (|V |+ |R|))

C. Theoretical Analysis and Comparison
Table II summarizes the theoretic analysis of runtime and

space complexity for the baseline approaches ST and RCL
as well as our approaches STOU and GRAPHITY. From this
table, it becomes obvious, that STOU clearly dominates the
ST approach. It can be seen that STOU is faster in retrieving,
without drawbacks in storage or adding and removing follow
edges as well as inserting new content nodes.
Also when comparing GRAPHITY to RCL the advantages

of GRAPHITY become obvious. GRAPHITY has a far lower
space complexity and is capable of dynamically adding and
removing edges. Due to the denormalization, it depends on the
concrete implementation if and at which cost RCL supports
and reflects changes in the social network when retrieving
the top-k news items. The complexity for adding a content
node is the same for both approaches. Only for computing a
news items feed, GRAPHITY has a complexity of O(k log(k))
compared to O(k) for RCL. But, as we can consider k to be
rather small parameter, both fall back to constant runtime in
practice.

V. USED DATA SETS
In order to verify the theoretical runtime complexity of the

different approaches in practice, we needed to apply them to
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Task ST RCL STOU GRAPHITY
Storage |V |+ |E| d× (|V |+ |E|) |V |+ |E| |V |+ 2× |E|

Retrieve news feed O((d× u) log(d× u)) O(k) O(d× log(d)) O(k log(k))
Create Content node O(1) O(d) O(1) O(d)
Add follow edge O(1) unclear O(1) O(d)
Remove follow edge O(1) unclear O(1) O(1)

TABLE II
THEORETICAL AGGREGATED AVERAGE RUNTIME OF THE DIFFERENT APPROACHES

Year |A| |Ad>10| |E|A| |C|
Metalcon 0.06 0.05 0.36 0.3
2004 0.17 0.03 0.9 0.2
2005 0.51 0.11 4.1 1.9
2006 0.81 0.23 8.4 5.8
2007 1.16 0.36 12.9 12.3
2008 1.43 0.48 16.5 19.1
2009 1.65 0.60 20.4 25.8
2010 1.86 0.72 24.5 31.9
2011 2.06 0.84 28.9 38.5

TABLE III
NETWORK CHARACTERISTICS OF THE DATA SETS (IN MILLIONS). Ad>10

IS THE SET OF AGGREGATION NODES WITH DEGREE BIGGER THAN 10

real world data. To our best knowledge there is no established
dataset to evaluate the runtime behavior of index structures on
dynamic networks. Therefore, we introduce two new datasets
which are described in detail in the following sections. The
Metalcon dataset provides the scenario of a real social network
with different types of aggregating and content nodes. The
Wikipedia dataset serves for the analysis of scalability issues.

A. Usecase 1: Social Networks - Metalcon
For our first use case, we took data from the social net-

working site Metalcon. It is a German special purpose social
network for fans of heavy metal music and musicians. The
data set consists of 60,158 aggregating nodes, 356,978 follow
edges, and 303,581 content nodes.
It is worthwhile mentioning that only 8 thousand of these

aggregating nodes are users. The other 52 thousand nodes
represent bands, records, and geographical places. The content
items consist of uploaded pictures, reviews for the records and
discussions of the users which are linked to the bands or some
general topics of interest. Even though so many different types
of aggregating nodes and content nodes are involved the data
follows a typical power law.
Furthermore, for Metalcon we do also have statistics about

deletion of content items. Only 0.34% of all content items
have been deleted while running the platform. Given this very
small ratio of data being deleted, we did not consider this
operation in our evaluations.

B. Usecase 2: Beyond Social Networks - Wikipedia
The retrieval of news feeds from ego networks may be of

high interest even beyond social networks. One example is the
reporting of updates in Wikipedia pages. This will also test the
scalability of GRAPHITY to a larger extent than Metalcon.

Editors in Wikipedia may be interested in observing changes
of the content in pages that reference “their” Wikipedia pages,
as such changes may affect the proper meaning and context
of the corresponding page. We can represent this use case
by modeling each Wikipedia page as an aggregating node and
each update action to a page as a content node. Thus, Newsk(a)
models the k most recent changes applied to pages referencing
page a. A change in the link structure is furthermore modeled
as a change of the ego networks. We use a data dump of
the German Wikipedia containing all revisions of all articles
since its emergence in 2004 until the August, 13th 2011. The
evolution of the data set over time is represented in Table III
by showing some characteristics for snapshots at given points
in time.

VI. EVALUATION

As proof of concept and to verify the theoretically predicted
runtime in a real implementation of a graph database, we have
conducted an experimental evaluation. For this purpose, we
implemented the baselines ST and RCL as well as our models
STOU and GRAPHITY on top of the Neo4j5 graph data base.
We point out that ST baseline is corresponding to the relational
data base design. Implementing it also on a graph data base
(using the same technology Neo4j) makes the results more
comparable. For that reason, RCL was also implemented on
a graph data base. Using two data scenarios from above, we
have evaluated the performance regarding:

• Retrieving news feeds We retrieved the news feeds for
every aggregating node and normalized the time to obtain
the number of news feeds an approach can generate on
average per second. We also binned aggregating nodes
together with their node degree. In this way, we give
empirical proof of the fact that the retrieval rate of
GRAPHITY is independent of the aggregating node’s
degree and the size of the network.

• Index maintenance We measure the time needed to add
content nodes to the graph and to update all relevant
index structures. This was also combined with adding or
removing friendship edges. With this measurement, we
want to give evidence that STOU will indeed outperform
GRAPHITY on these operations.

• Index build time Starting from an existing network with
ST, we measured how long it takes to build the STOU
and the GRAPHITY index.

5http://neo4j.org/
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Metric RCL STOU GRAPHITY
Retrieval rate 77k 12k 12k
Index built time 5 057s 3.2s 15s
Storage 5.1 GB 0.057 GB 0.058 GB

TABLE IV
EVALUATION OF RCL, STOU AND GRAPHITY ON THE METALCON

DATASET.

• Storage space To understand space complexity in prac-
tice, we looked at the size of the graph database.

All our experiment were run on a 24 core machine with
48GB of RAM. To overcome latency of harddisk and OS
caching mechanisms, all data was processed on a RAM
memory disk.

A. Storage Complexity of RCL
From the theoretical analysis, we can clearly expect the

RCL approach to perform best with respect to the retrieval
rate. At the same time, due to the high redundancy in the
data, RCL has a horrendous space complexity. In fact, during
our experiments we found out that it is not feasible to compute
RCL on larger datasets.
To underline these findings, we have evaluated the retrieval

rate, index built time, and storage space requirements of RCL
in comparison to STOU and GRAPHITY on our smallest data
set: Metalcon6. The results of this evaluation are shown in Ta-
ble IV. Regarding the retrieval rate, RCL clearly outperforms
STOU and GRAPHITY by a factor of 6. However, already the
time necessary to compute the RCL index was two to three
orders of magnitude slower. Also storage space explodes by a
factor of 100. Note, that this space requirement involves only
the content nodes of the graph structure and not the actual
content substance; texts, pictures, audio or video data was not
stored in the graph database.

B. Runtime of ST
In a preliminary experiment, we measured the time in order

to calculate the rate of retrieved news feeds per second for one
snapshot of Wikipedia for every year as shown in Figure 6.
The ST baseline, which is equivalent to the relational data
base approach with two joins, drops in speed very fast. On
the 2011 Wikipedia data set only 132 newsfeeds per second
could be retrieved with ST. STOU is already 64 times faster
than ST and GRAPHITY performs even 142 times faster.

C. Retrieving News Feeds
1) Independence of the Node Degree: The node degree

is the most influential parameter for the runtime of ST
and STOU. We used equal sized bins to group articles of
similar node degree [0− 10], [10− 20], [20− 30], . . . together.
Consecutively, we have randomly selected articles from each
bin and we retrieved the news feeds for those articles to
empirically evaluate the runtime performance.
6As the Metalcon dataset represents a snapshot of an online community, it

does not provide any information on the dynamics of the network structure.
Hence, we could not perform a realistic analysis of the index maintenance
and updating performance in this case.
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the Wikipedia 2009 snapshot

From Figure 7, we can see that the rate of retrieved news
feeds stays constant with GRAPHITY. This is the experimental
evidence that GRAPHITY is indeed independent of the node
degree and does therefore scale. The news feed rate of STOU
on the other side drops as expected with a behavior propor-
tional to 1/(d log(d))

2) Dependency on k for News Items Feed Retrieval: For
our tests, we choose k = 15 for retrieving the news items
feeds. In this section, we argue for the choice of this value for
k and show the influence of selecting k with respect to the
performance of retrieving the news feeds per second. On the
Wikipedia 2009 snapshot, we retrieved the news item feeds for
all aggregating nodes with a node degree d > 10 and varied k.
As can be seen in Figure 8, GRAPHITY’s retrieval rate

clearly depends on the choice of k. For a small k, STOU’s
retrieval rate is almost constant and sorting of ego networks
(which is independent of k) is the dominant factor. With
larger k, STOU’s speed drops as both merging O(k log(k))
and sorting O(d log(d)) need to be conducted. The dashed
line shows the interpolation of the measured frequency of
retrieving the news feeds given the function 1/k log(k) while
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the dotted line is the interpolation based on the function 1/k.
As we can see, the dotted line is a better approximation to the
actually measured values. This indicates that our theoretical
estimation for the retrieval complexity of k log(k) is quite
high compared to the empirically measured value which is
close to k.

D. Index Maintenance
Here, we investigate the runtime of STOU and GRAPHITY

in maintaining changes of the network as follow edges are
added and removed as well as content nodes are created. We
have evaluated this for the snapshots of Wikipedia from 2004
to 2008. For Metalcon, this data on social network evolution
was not available. We simulated the events in the same order
as they actually occurred in the Wikipedia history.
We see in Figure 9(a) that the number of updates the

algorithms are able to handle drops as the data set grows.
However, their relative speed up of STOU over GRAPHITY
stays almost constant at a factor between 10 and 20. As the
retrieval rate of GRAPHITY for big data sets stays with 12k
retrieved news feeds per second, the update rate of the biggest
data set is only about 170 updated GRAPHITY indices per
second.
Figure 9(b) shows the rates for adding follow edges. This

relative performance between STOU and GRAPHITY is about
the same as for adding new content nodes. This makes perfect
sense since both operations are linear in the node degree O(d).
Overall, STOU was expected to outperform GRAPHITY in this
case since the complexity class of STOU for these tasks is
O(1).
As we can see from Figure 9(c) the rates for removing

friendships are comparable, meaning that this task is in
GRAPHITY as fast as in STOU. This is also as expected since
the complexity class of this task is O(1) for both algorithms.

E. Index Build Time
We have analyzed how long it takes to build the GRAPHITY

and STOU index for a given, entire network. Both indices

0

20

40

60

80

100

2004 2005 2006 2007 2008 2009 2010 2011

In
d
ex

in
g
ti
m
e
in

m
in
u
te
s

Wiki dump year

GRAPHITY
STOU

Fig. 10. Time to build the index with respect to network size

YEAR ST RCL STOU GRAPHITY
Metalcon 0.057 5.1 0.057 0.058
2004 0.09 0.6 0.09 0.11
2005 0.35 10.7 0.35 0.51
2006 0.8 59* 0.8 1.2
2007 1.5 177* 1.5 1.9
2008 2.1 326* 2.1 2.8
2009 2.7 519* 2.7 3.6
2010 3.2 721* 3.2 4.4
2011 3.8 998* 3.8 5.3

TABLE V
STORAGE SPACE OF THE ADDITIONAL INDEXES FOR THE WIKIPEDIA DATA

SET IN GB (VALUES INDICATED WITH * ARE EXTRAPOLATED).

have been computed on a graph with existing follow relations.
To compute the GRAPHITY and STOU indices, for every
aggregating node a all content nodes are inserted to the
linked list representation of C(a). Subsequently, only for the
GRAPHITY index for every aggregating node a the ego net-
work is sorted by time in descending order. For both indices,
we have measured the rates of processing the aggregating
nodes per second as shown in Figure 10.
As can be seen from the figure, the time needed for com-

puting the indices increases over time. This can be explained
by the two steps of creating the indices: For the first step,
the time needed for inserting content nodes increases as the
average amount of content nodes per aggregating node grows
over time. For the second step, the time for sorting increases
as the size of the ego networks grows. Overall, we can say
that for the largest Wikipedia data set from 2011, still a rate of
indexing 433 nodes per second with GRAPHITY is possible.
Creating the GRAPHITY index for the entire Wikipedia 2011
data set can be conducted in 77 minutes. The computing of
the STOU index required 42 minutes.

F. Storage Space

Except for the update speed, operators of web platforms
are also interested in operating costs such as resulting from
data base sizes. Table V shows the additional storage space
required for the indexes.
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Fig. 9. Index update rates for various changes of the network.

We see that the data base for ST and STOU is the same
size. This makes sense since nothing but the topology for the
content nodes changes. The data bases for the RCL approach
explode as expected. Later numbers are just extrapolated from
network statistics. GRAPHITY is bigger that STOU but does
not grow as fast as RCL.

VII. RELATED WORK

The retrieval of top-k items is considered, e.g. in temporal
relational databases where a single global index is created
over all content items [4], [5]. While this index serves for
general purpose, it makes the retrieval of top-k items from an
ego network very expensive. Basically, all items of the entire
index need to be retrieved and joined with the user’s friendship
relations to select the relevant news items. An overview of
approaches for top-k query processing in relational databases
as well as XML-based databases is provided by the extensive
survey of Ilyas et al. [1]. The approaches are classified into a
taxonomy of top-k query processing techniques along different
dimensions like the underlying query model. One example is
the query model of top-k join processing and is applied, e.g.
by Ladwig et al. [6] when conducting keyword search in graph
databases. In principle, this approach can be applied to find the
top-k content items in social networks. However, in top-k join
processing one is typically not interested in the temporal order
in which the content items appeared. In addition, the search
is conducted over the entire graph and not on a specific sub-
graph like one’s ego network. Thus, top-k join processing for
keyword search can be considered different to our problem of
retrieving top-k content items from one’s ego network and in
the temporal order of the content items.
FeedEx [7] is a distributed archive system for news feeds

based on a peer-to-peer infrastructure. It mainly addresses
network issues such as a proper communication protocol
and dynamic clustering of clients based on the similarity of
subscribed news feeds. Goal is to save communication costs
for the providers of news feeds by receiving content items from
one’s neighbors in FeedEx’s peer-to-peer network rather from
constantly polling the original news feed providers. Similar

to FeedEx, Magnet [8] is a peer-to-peer network in the field
of distributed event-based systems [9] that clusters the aggre-
gating nodes based on similar subscriptions using distributed
hash tables. Like FeedEx, the goal is to increase efficiency of
the dissemination of content items and establishing the peer-
to-peer network and maintaining it. The problem of clustering
clients based on overlapping news feed subscriptions is similar
to clustering users of similar ego networks. This might be a
future extension of our graph models for top-k retrieval.
A user in a social network might be interested in incorporat-

ing feeds from other users on specific topics like music. These
users, however, may or may not be members of one’s ego
network. This makes the problem of incorporating messages
in one’s news feed one of reachability and distance between
nodes in the graph, where the nodes represent the users. Cohen
et al. [10] present a data structure based on 2-hop covers that
allows for an efficient processing of queries on graphs for
determining the reachability and distance between two nodes.
Broder et al. [11] present an approach considering reachabil-
ity constraints in graphs in the context of publish/subscribe
systems. The targeted application areas are web advertisement
and news feeds in social networks represented as graphs. The
news are filtered and ranked along different criteria like topical
preference, social network distance, and popular users [2],
novelty [12], or diversity [13], [14]. In contrast, we concentrate
with STOU and GRAPHITY on the processing of content
items from one’s ego network, i.e. the users that are just
one hop away. This problem is insofar different, as we are
not concerned with questions of reachability and distance in
graphs [10], [15], [16]. This information is already given by
the ego network, i.e. the fact that all users are connected with
oneself.
Finally, Hexastore [17] and Neo4j7 aim at providing scalable

general-purpose query processing on very large graphs. They
do not explicitly consider the specific problem of efficiently
retrieving the top-k content nodes from a social network graph
as it is the aim here. However, the existing graph databases

7http://neo4j.org/
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can be used as basis for implementing our graph models. In
fact, Neo4j has been used to implement STOU and GRAPHITY
and the RCL baseline (see Section VI).

VIII. CONCLUSION
Even though the RCL approach is the fastest in retrieving

news items feeds, the high redundancy of data makes it
impractical. In addition to the large storage overhead, it is
unclear how to handle update anomalies that can occur due
to the denormalization of the data model. Finally creating
new content items requires the update of d indices. Our
novel GRAPHITY approach has the same complexity class
for its runtime without the need for redundancy in the data.
Thus, GRAPHITY is preferable to RCL. In further analysis,
we showed that GRAPHITY clearly outperforms STOU in
retrieving news items feeds on our data sets by a factor of
3. However, our second contribution STOU performs better
when adding content items to the network or the network
changes its structure. The performance loss of GRAPHITY in
this case depends on the average node degree of the network
and has been shown empirically to be of an order of magni-
tude. From these observations we conclude that GRAPHITY is
favourable in settings where significantly more retrieval tasks
are expected compared to the write operations in order to
have a improvement in performance. In our experiments, we
observed a break even in performance between GRAPHITY and
STOU when the retrieval of news streams happens approxi-
mately 3 times as often as the creation of new content items. If
the creation of content items is more frequent or, alternatively,
if node degrees are really small the STOU approach yields a
better performance.
As for Metalcon, we are in a setting where users retrieve

significantly more content than they produce. After an ad-hoc
comparison to the currently used relational database technol-
ogy8, Metalcon has decided to migrate its data model towards a
neo4j implementation of GRAPHITY. The code is open source
and can be found at http://www.rene-pickhardt.de/graphity-
source-code/. A demo of GRAPHITY on a small data set can
be found at http://gwt.metalcon.de/GWT-Modelling/. While
discussing the decision of migrating Metalcon to GRAPHITY
with developers of other social networking sites, we came
across specific scenarios where the developers stated that they
would rather use STOU since in their network application
the node degrees stay rather small and they could accept the
slower retrieval rate for a faster writing process9.

IX. FUTURE WORK AND EXTENSIONS
So far, we only worked on index structures for news items

feeds based on a temporal ranking. Under this aspect, two
natural extensions are the incorporation of a content based
global relevance ranking or a personalized filtering of content
items in a news feed. Conceptually there is little difference in

8http://www.rene-pickhardt.de/time-lines-and-news-streams-neo4j-is-377-
times-faster-than-mysql/
9http://neo4j.org/nabble/#nabble-td3477669 and http://www.rene-

pickhardt.de/graphity

using global relevance weights over the time of creation for
sorting the content items. The management of the GRAPHITY
or STOU index can still be achieved efficiently. However, a
thorough empiric evaluation still needs to confirm the theoretic
bounds. Filtering a news feed based on the personal preference
of a user, instead, can be implemented on top of our indices.
This implies a far higher value for k in order to retrieve more
content items as basis for a filtering approach, which also yet
needs to be evaluated in a real world scenario.
A second direction of future work is the scalability beyond

a single machine. Given that the underlying graph data base
technology Neo4j currently does not scale horizontally, this
calls for modified and distributed versions of GRAPHITY
and STOU. The naive approach of distributing the nodes
equally over several instances and maintaining the relatively
small index structures for each aggregating node locally seems
promising. The framework for empirical proof has to be
developed and tests have to be conducted.
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APPENDIX
In Section III-C, we relied on the ability to efficiently

merge the lists of content items of several users connected by
the GRAPHITY index structure. In this appendix, we provide
the algorithm and proof its runtime complexity. Algorithm 1
shows the top-k n-way merge as pseudo code.

Algorithm 1 RetrieveFeed(a,k)
1: Q ← ∅ // priority queue
2: R ← ∅ // result list
3: bfirst ← SUCCESSOR(a, ego:a)
4: cfirst ← SUCCESSOR(bfirst, update)
5: R.ADD(cfirst)
6: Q.ADD(SUCCESSOR(cfirst, update))
7: blatest ← SUCCESSOR(bfirst, ego:a)
8: clatest ← SUCCESSOR(blatest, update)
9: Q.ADD(clatest)
10: while ! Q.EMPTY() && SIZE(R) < k do
11: cmostRecent ← Q.POPFIRST()
12: R.ADD(cmostRecent)
13: Q.ADD(SUCCESSOR(cmostRecent, update)
14: if cmostRecent = clatest then
15: blatest ← SUCCESSOR(blatest, ego:a)
16: clatest ← SUCCESSOR(blatest, update)
17: Q.ADD(clatest)
18: end if
19: end while
20: return R

The algorithm starts in line 1 with initializing an empty
priority queue Q to manage content nodes which still have

to be considered. The content nodes in this queue are sorted
in temporal order from the most recent to the oldest node.
At any time, Q contains at most one content node from each
aggregating node b ∈ Ego(ai). The list R in line 2 is used to
store the result list Newsk(a) and is initially empty, too. By
using the GRAPHITY index (i.e. the ego:a edges), we obtain
the first aggregating node bfirst of a in line 3. As the aggregating
nodes in the GRAPHITY index are sorted in temporal order of
their most recent content node, the first content node cfirst of
bfirst (line 4) is also the first entry for our result list R (line 5).
For the further processing, we now add in line 6 the second

most recent content node of bfirst to the priority queue. In
line 7 and 8 we also determine the next aggregating node
from the GRAPHITY index and add its first content node to Q.
Throughout the loop, we denote with blatest the latest already
considered aggregating node from the GRAPHITY index and
its first content node with clatest. Inside the loop, we pop the
next content node cmostRecent from the priority queue, append
it to the result list and add the next most recent content item
produced by the same aggregating node to Q (lines 11 to 13).
As clatest is in the queue itself, we can be sure to consider
only newer content nodes, until clatest itself is retrieved from
the queue. Likewise, we can be sure there is no need to look
at further aggregating nodes from the GRAPHITY index, as
their content nodes are at least not newer than the one of
blatest. In case cmostRecent coincides with clatest (line 14), this
guarantee does not hold any longer. Hence, we have to look
in the GRAPHITY index at the next aggregating node and its
first content node which then take the role of blatest and clatest
(line 15 to 17). The loop ends as soon as we have considered
all content nodes of all aggregating nodes in a’s ego network
(i.e. the queue is empty), or when Newsk(a) is complete, i.e.
the result list contains k content nodes.
For a runtime analysis, we point out that for every iteration

of the while loop a content node is added to the result list.
Therefore, the while loop is iterated at most k times. Next we
note that the queue will at most consist of k + 1 elements.
The most expensive operations within the loop are adding
and removing elements from the queue. Both can be done
in at most logarithmic time O(log(k)) (e.g. using a heap data
structure for the priority queue). In conclusion, the overall
complexity is O(k log(k)). Please note in particular that these
operations neither depend on the network size n nor on the
node degree d of a.
Further, by caching the state of the priority queue Q after

retrieval it is even possible to retrieve additional l elements
for incorporation into the news feed. Thereby, we can extend
an existing news feed Newsk(a) with top-k content items to a
Newsk+l(a) news items feed with the top-(k + l) items at an
additional cost of O(l× log(k+ l)) instead of restarting from
an empty result list with a runtime of O((k + l) log(k + l)).
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