
Efficient Graph Models for Retrieving the Top-
k News Feeds from Ego Networks

René Pickhardt, Thomas Gottron, Jonas Kunze, Ansgar Scherp Steffen Staab

How to retrieve more than 10'000 temporal ordered news feeds per second in
social networks with millions of users like Facebook and Twitter by using graph

data bases (like neo4j) and Graphity

Joint collaboration with

Thomas
Gottron

Jonas
Kunze (from metalcon.de)

Steffen
Staab

Ansgar
Scherp

Index

• Introduction to the newsfeed problem

• Why relational Data bases won't do the job

• The construction and idea of STOU

• The construction and idea of graphity

• Example 1: retrieval of news feeds (top-k n-way merge)

• Example 2: Creating new Content Items

• Evaluation on Wikipedia data set.

A "typical" social network graph

Retrieving Node A's news stream

Retrieving Node A's news stream

Some Challenges

Social networks like Twitter and Facebook have several
thousand requested news feeds per second

News feeds change fast: Several hundred newly created
content items per second. (600 tweets / sec in 2010)

News feeds are different for every user

Realtime (retrieval should be as low as micro seconds)

Friendship graph changes over time

Overall: This is a very dynamic problem with a lot of chaotic
& unpredictable behaviour

Index

• Introduction to the newsfeed problem

• Why relational Data bases won't do the job

• The construction and idea of STOU

• The construction and idea of graphity

• Example 1: retrieval of news feeds (top-k n-way merge)

• Example 2: Creating new Content Items

• Evaluation on Wikipedia data set.

First we have some Users in a social Network

ID

a
b
c
d
e

User

They follow other users

ID

a
b
c
d
e

from to
a c
a b
a d
b c
b d
b e

User Follower

Everyone produces status updates and content

ID

a
b
c
d
e

from to
a c
a b
a d
b c
b d
b e

User time Content

d 19 Lorem ipsum

e 18 dolor sit amet,

e 17 consectetur

b 14 adipisici elit, sed

a 13 eiusmod tempor

c 12 incidunt ut labore

b 11 et dolore magna

a 8 aliqua. Ut enim

c 5 ad minim veniam

d 3 quis nostrud

User Follower

ContentItems

Our Query joins over huge Follower Matrix

ID

a
b
c
d
e

from to
a c
a b
a d
b c
b d
b e

User time Content

d 19 Lorem ipsum

e 18 dolor sit amet,

e 17 consectetur

b 14 adipisici elit, sed

a 13 eiusmod tempor

c 12 incidunt ut labore

b 11 et dolore magna

a 8 aliqua. Ut enim

c 5 ad minim veniam

d 3 quis nostrud

User Follower

ContentItem

SELECT ci.User, ci.time, ci.Content
 FROM ContentItems ci
 JOIN Follower f on ci.User=f.to
 JOIN User u on u.ID = f.from
 WHERE u.ID like "a" ORDER BY ci.time DESC

Index

• Introduction to the newsfeed problem

• Why relational Data bases won't do the job

• The construction and idea of STOU

• The construction and idea of graphity

• Example 1: retrieval of news feeds (top-k n-way merge)

• Example 2: Creating new Content Items

• Evaluation on Wikipedia data set.

STOU = Star Topology (Temporal) Ordered Updates

From the standard social network graph we move to
(temporal) ordered lists for rectangular nodes

Introducing linked lists for status updates!

What are the pros and cons of this change?

• dynamic retrival possible (friendship graph may change)
• very flexible data structure

• inserts and removes are very fast (all operations are O(1))

Pros of this approach

• unclear which edge to traverse first!
• ==> entire ego network must be sorted

• Size d of an ego network is usually much bigger than the
number of retrieved items k.

• ==> Sorting seems to much effort

Contra: slow retrieval --> O(d log(d))

Index

• Introduction to the newsfeed problem

• Why relational Data bases won't do the job

• The construction and idea of STOU

• The construction and idea of graphity

• Example 1: retrieval of news feeds (top-k n-way merge)

• Example 2: Creating new Content Items

• Evaluation on Wikipedia data set.

The key concept: going from star topology to lists

graphity index for the node "a"

Graphity rules:

• for every node (a &
b) that follows others
we create a linked list

• this linked list contains
all the nodes that are
beeing followed by this
node.

• The followed nodes
are sorted by the
timestamp of their
most recent content
item

second graphity index for node "b"

Index

• Introduction to the newsfeed problem

• Why relational Data bases won't do job

• The construction and idea of STOU

• The construction and idea of graphity

• Example 1: retrieval of news feeds (top-k n-way merge)

• Example 2: Creating new Content Items

• Evaluation on Wikipedia data set.

Rearanging the graph ...

top-k n-way Merge for retrieval in O(k log(k))

push(19) to PQ

Pointer tmp

Stream:

Priority
Queue:

19

top-k n-way Merge for retrieval in O(k log(k))

Pointer tmp

push(14) to PQ

push(3) to PQ

Stream: (19,d)

Priority
Queue:

14
3

top-k n-way Merge for retrieval in O(k log(k))

Pointer tmp

push(11) to PQ

Stream: (19,d) (14,b)

Priority
Queue:

12
11
3

push(12) to PQ

top-k n-way Merge for retrieval in O(k log(k))

Pointer tmp

push(5) to PQ

Stream: (19,d) ; (14,b) ; (12,c)

Priority
Queue:

11
5
3

top-k n-way Merge for retrieval in O(k log(k))

Stream: (19,d) ; (14,b) ; (12,c) ; ...

Priority
Queue:

11
5
3

retrieve 11 now!

Index

• Introduction to the newsfeed problem

• Why relational Data bases won't do the job

• The construction and idea of STOU

• The construction and idea of graphity

• Example 1: retrieval of news feeds (top-k n-way merge)

• Example 2: Creating new Content Items

• Evaluation on Wikipedia data set.

Creating new Content items

b creates a new content
 item

Creating new Content items

b created 20

• update linked list of b's
content items

Creating new Content items

b created 20

• update linked list of b's
content items

• now look in which ego
networks b is member
of. (our case just a)

Creating new Content items

b created 20

• update linked list of b's
content items

• now look in which ego
networks b is member
of. (our case just a)

• interlink b's
predecessor and
successor

Creating new Content items

b created 20

• update linked list of b's
content items

• now look in which ego
networks b is member
of. (our case just a)

• interlink b's
predecessor and
successor

• user the follow edge
from a to b and the
first ego:a to insert b in
the beginning of ego:a

Index

• Introduction to the newsfeed problem

• Why relational Data bases won't do the job

• The construction and idea of STOU

• The construction and idea of graphity

• Example 1: retrieval of news feeds (top-k n-way merge)

• Example 2: Creating new Content Items

• Evaluation on Wikipedia data set.

Wikipedia as a social network

• Every article ==> User

• Every link in an article ==> Follow relationship

• Every Revision of an article ==> Status update of a user

• Remark: if in a new revision the outlinks of the wikipedia
article change

• We don't take this as a status update
• we interpret this revision as a change to the friendship

graph

demonstrating independence of node degree

demonstrating linear dependence of k

Index maintaining - inserting new content items

updating graphity for new friendship relations

updating graphity if friendships break

time to build the index

Conclusion

• We built two graph indices for top-k news feed retrieval

• STOU is fastest in writing operations (with moderate
reading speed)

• Graphity is faster in retrieving operations

• Empirical study on a graphs with up to 2 mio. Users, 32
mio. follow relationships and 50 mio. content items shows
that graphity even performs better than the theoretical
runtime

• Especially for graphity we saw
• retrieval of social news feeds of k items in O(k log(k))
• Almost as good as redundant content lists
• But no redundancy in content data

So which one to take?

42

Thank you for your attention

More information + Slides on:
http://www.rene-pickhardt.de/graphity

Thanks to
• Mattias Persson and Peter Neubauer from neotechnology.com
• the neo4j community on the neo4j mailinglist for helpful advices
• Knut Schumach for coming up with the name GRAPHITY
• Matthias Thimm & Leon Kastler for helpful discussions

This project is founded by the EU Projects Social Sensor and ROBUST.

Sorce code & data sets on:
http://www.rene-pickhardt.de/graphity-source-code/

http://www.rene-pickhardt.de/graphity-source-code/

Backup slides

• Backup slides

Rearanging the graph...

Updates need to be done in the following situation

Updates need to be done in the following situations

• new created content item (O(d))
o index of every follower needs to be updated

• new created follow relation (O(d))
o index of follower needs to be updated

• friendship relation breaks (O(d))
o index of the former follower needs to be updated

• most recent content item of a user is deleted (O(d²))
o index of every follower nees to be updated

Future work

• Generalize / built theory on top-k joins

• Distributed system

• Partially do graphity index
• (ever update only yields updating a constant number

of graphity indices)

• Tie strength (filtering / ranking)

Evaluation Characteristics of data sets

Retrieving streams on all data sets

Retrieving streams Node degre > 10

Simulating a social network

Summary - We created a graph model with:

• fast retrieval of social news feeds of k items in O(k log(k))
• dynamic retrieval method
• no redundancy in content data
• Creating new Status Updates yields updating of d graphity

indices of following nodes
• Each Graphity index update is O(1)

We also conducted an evaluation of a graph with :
• ~ 2 mio. users
• ~32 mio. follow relations
• ~50 mio. Status updates

giving empirical proof of our theoretical findings.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

