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How to retrieve more than 10'000 temporal ordered news feeds per second in 
social networks with millions of users like Facebook and Twitter by using graph 

data bases (like neo4j) and Graphity
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A "typical" social network graph



Retrieving Node A's news stream



Retrieving Node A's news stream



Some Challenges

Social networks like Twitter and Facebook have several 
thousand requested news feeds per second

News feeds change fast: Several hundred newly created 
content items per second. (600 tweets / sec in 2010)

News feeds are different for every user

Realtime (retrieval should be as low as micro seconds)

Friendship graph changes over time

Overall: This is a very dynamic problem with a lot of chaotic 
& unpredictable behaviour
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First we have some Users in a social Network
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They follow other users
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Everyone produces status updates and content
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d 19 Lorem ipsum
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e 17 consectetur
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a 13 eiusmod tempor
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User Follower

ContentItems



Our Query joins over huge Follower Matrix
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User time Content

d 19 Lorem ipsum

e 18 dolor sit amet,

e 17 consectetur

b 14 adipisici elit, sed

a 13 eiusmod tempor

c 12 incidunt ut labore

b 11 et dolore magna

a 8 aliqua. Ut enim

c 5 ad minim veniam

d 3 quis nostrud

User Follower

ContentItem

SELECT ci.User, ci.time, ci.Content 
   FROM ContentItems ci
       JOIN Follower f on ci.User=f.to 
       JOIN User u on u.ID = f.from
   WHERE u.ID like "a" ORDER BY ci.time DESC
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STOU = Star Topology (Temporal) Ordered Updates

From the standard social network graph we move to 
(temporal) ordered lists for rectangular nodes



Introducing linked lists for status updates!

What are the pros and cons of this change?



• dynamic retrival possible (friendship graph may change)
• very flexible data structure

• inserts and removes are very fast (all operations are O(1))

Pros of this approach



• unclear which edge to traverse first!
• ==> entire ego network must be sorted

• Size d of an ego network is usually much bigger than the 
number of retrieved items k.

• ==> Sorting seems to much effort

Contra: slow retrieval --> O(d log(d))
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The key concept: going from star topology to lists

 



graphity index for the node "a"

Graphity rules:

• for every node (a & 
b) that follows others 
we create a linked list

• this linked list contains 
all the nodes that are 
beeing followed by this 
node.

• The followed nodes 
are sorted by the 
timestamp of their 
most recent content 
item



second graphity index for node "b"
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Rearanging the graph ...



top-k n-way Merge for retrieval in O(k log(k))

push(19) to PQ

Pointer tmp

Stream: 

Priority
Queue:

19



top-k n-way Merge for retrieval in O(k log(k))

Pointer tmp

push(14) to PQ

push(3) to PQ

Stream: (19,d)  

Priority
Queue:

14
3



top-k n-way Merge for retrieval in O(k log(k))

Pointer tmp

push(11) to PQ

Stream: (19,d)  (14,b) 

Priority
Queue:

12
11
3

push(12) to PQ



top-k n-way Merge for retrieval in O(k log(k))

Pointer tmp

push(5) to PQ

Stream: (19,d) ; (14,b) ; (12,c)

Priority
Queue:

11
5
3



top-k n-way Merge for retrieval in O(k log(k))

Stream: (19,d) ; (14,b) ; (12,c) ; ...

Priority
Queue:

11
5
3

retrieve 11 now!
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Creating new Content items

b creates a new content 
 item



Creating new Content items

b created 20

• update linked list of b's 
content items
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Creating new Content items

b created 20

• update linked list of b's 
content items

• now look in which ego 
networks b is member 
of. (our case just a)

• interlink b's 
predecessor and 
successor

• user the follow edge 
from a to b and the 
first ego:a to insert b in 
the beginning of ego:a
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Wikipedia as a social network

• Every article  ==> User

• Every link in an article ==> Follow relationship

• Every Revision of an article ==> Status update of a user

• Remark: if in a new revision the outlinks of the wikipedia 
article change 

• We don't take this as a status update
• we interpret this revision as a change to the friendship 

graph



demonstrating independence of node degree



demonstrating linear dependence of k



Index maintaining - inserting new content items



updating graphity for new friendship relations



updating graphity if friendships break



time to build the index



Conclusion

• We built two graph indices for top-k news feed retrieval

• STOU is fastest in writing operations (with moderate 
reading speed)

• Graphity is faster in retrieving operations

• Empirical study on a graphs with up to 2 mio. Users, 32 
mio. follow relationships and 50 mio. content items shows 
that graphity even performs better than the theoretical 
runtime

• Especially for graphity we saw
• retrieval of social news feeds of k items in O(k log(k))
• Almost as good as redundant content lists
• But no redundancy in content data



So which one to take?

42



Thank you for your attention

More information + Slides on:
http://www.rene-pickhardt.de/graphity

Thanks to 
• Mattias Persson and Peter Neubauer from neotechnology.com 
• the neo4j community on the neo4j mailinglist for helpful advices 
• Knut Schumach for coming up with the name GRAPHITY 
• Matthias Thimm & Leon Kastler for helpful discussions

This project is founded by the EU Projects Social Sensor and ROBUST.

Sorce code & data sets on:
http://www.rene-pickhardt.de/graphity-source-code/

http://www.rene-pickhardt.de/graphity-source-code/


Backup slides

• Backup slides



Rearanging the graph...



Updates need to be done in the following situation 

Updates need to be done in the following situations

• new created content item                                       (O(d))
o index of every follower needs to be updated

• new created follow relation                                    (O(d))
o index of follower needs to be updated

• friendship relation breaks                                      (O(d))
o index of the former follower needs to be updated

• most recent content item of a user is deleted     (O(d²))
o index of every follower nees to be updated



Future work

• Generalize / built theory on top-k joins

• Distributed system

• Partially do graphity index 
• (ever update only yields updating a constant number 

of graphity indices)

• Tie strength (filtering / ranking)



Evaluation Characteristics of data sets



Retrieving streams on all data sets



Retrieving streams Node degre > 10



Simulating a social network



Summary - We created a graph model with: 

• fast retrieval of social news feeds of k items in O(k log(k))
• dynamic retrieval method
• no redundancy in content data
• Creating new Status Updates yields updating of d graphity 

indices of following nodes
• Each Graphity index update is O(1)

We also conducted an evaluation of a graph with :
• ~  2 mio. users
• ~32 mio. follow relations
• ~50 mio. Status updates

giving empirical proof of our theoretical findings.
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